RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences // Archive

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014 Issue 3(36), Pages 21–30 (Mi vsgtu1300)

This article is cited in 1 paper

Differential Equations

A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator

S. A. Aldashev

Kazakh National Pedagogical University, Almaty, 480100, Kazakhstan

Abstract: We consider the Dirichlet spectral problem with the homogeneous boundary conditions in a cylindrical domain of Euclidean space for multidimensional hyperbolic equation with wave operator. We construct the solution as an expansion in multidimensional spherical functions; prove the existence and uniqueness theorems. The obtained conditions of the problem unique solvability essentially depend on the “height” of the cylinder.

Keywords: multidimensional hyperbolic equation, Dirichlet spectral problem, multidimensional cylindrical domain, solvability, uniqueness.

UDC: 517.956.328

MSC: 35L05, 35R25, 35A01, 35A02

Original article submitted 04/III/2014
revision submitted – 26/V/2014

DOI: 10.14498/vsgtu1300



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025