Abstract:
We have studied the Stefan problem with Caputo fractional order time derivatives. The difference scheme is built. The algorithm and the program for a numerical solution of the Stefan problem with fractional differentiation operator are created. For the given entry conditions and freezing ground parameters we have obtained the space-time temperature dependences for different values of parameter $\alpha $. The functional dependences of the interface motion for the generalized Stefan conditions depending on the value of $\alpha $ are estimated. Finally we have found that the freezing process is slowed down during the transition to fractional derivatives.
Keywords:Caputo fractional derivative, fractal structure, Stefan problem,
the memory effect, difference scheme, heat conductivity, phase transition,
phase boundary.