RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences // Archive

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011 Issue 2(23), Pages 17–23 (Mi vsgtu848)

This article is cited in 2 papers

Differential Equations

Estimates for some convolution operators with singularities of their kernels on spheres

A. V. Gil, A. I. Zadorozhnyi, V. A. Nogin

Dept. of Differential and Integral Equations, Southern Federal University, Faculty of Mathematics, Mechanics and Computer Sciences, Rostov-on-Don

Abstract: In the framework of Hardy spaces $H^p$, we study multidimensional convolution operators whose kernels have power-type singularities on a finite union of spheres in $\mathbb R^n$. Necessary and sufficient conditions are obtained for such operators to be bounded from $H^p$ to $H^q$, $0<p\leq q<\infty$, from $H^p$ to BMO, and from BMO to BMO.

Keywords: convolution, sphere, oscillating symbol, BMO, $(H^p{-}H^{q})$-estimates, multiplier, distribution.

UDC: 517.983

MSC: Primary 47B38; Secondary 30H35, 30H10

Original article submitted 18/XI/2010
revision submitted – 18/II/2011

DOI: 10.14498/vsgtu848



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024