Abstract:
A system of nonlocal cosmological equations where the time variable runs over a half-line is considered. These equations are more suitable for description of the Universe than the previously discussed cosmological equations on the whole line since the Friedmann metric contains a singularity at the beginning of time. Definition of the exponential operator includes a new arbitrary function which is absent in the equations on the whole line. It is shown that this function could be choosen in such a way that one of the slow roll parameters in the chaotic inflation scenario can be made arbitrary small. Solutions of the linearized nonlocal equations on the half-line are constructed.
Keywords:equations with an infinite number of derivatives, cosmological models, heat conduction equation.