RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya // Archive

Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009 Issue 8(74), Pages 67–77 (Mi vsgu281)

This article is cited in 4 papers

Mathematics

About the intersection of the maximal subgroups of finite groups

M. V. Sel'kin, R. V. Borodich

Francisk Skorina Gomel State University, Gomel, 246019, Belarus

Abstract: The structure of normal subgroups in $\Theta $-frattini expansions is established in the given work. Local Fitting $\frak F$ formation contains all nilpotent groups. For this formations we show that in solvable group the intersection $\frak F$-abnormal maximal $\Theta$-subgroups, which don't contain $\frak F$-radical and don't belong to $\frak F$, coincides with the intersection $\frak F$-abnormal maximal $\Theta $-subgroups and belongs formation $\frak F$.

Keywords: group, local formation, Fitting formation, $m$-functor, abnormal maximal subgroup.

UDC: 512.542

Received: 21.07.2009
Revised: 21.07.2009



© Steklov Math. Inst. of RAS, 2024