RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya // Archive

Vestnik SamU. Estestvenno-Nauchnaya Ser., 2018 Volume 24, Issue 4, Pages 33–40 (Mi vsgu597)

Mathematics

Parametrization of invariant manifolds of slow motions

V. A. Sobolev, E. A. Shchepakina, E. A. Tropkina

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russian Federation

Abstract: The method of integral manifolds is used to study the multidimensional systems of differential equations. This approach allows to solve an important problem of order reduction of differential systems. If a slow invariant manifold cannot be described explicitly then its parametrization is used for the system order reduction. In this case, either a part of the fast variables, or all fast variables, supplemented by a certain number of slow variables, can play a role of the parameters.

Keywords: singular perturbations, integral manifold, order reduction, asymptotic expansion, parametrization, differential equations, fast variables, slow variables.

UDC: 517.928

Received: 26.09.2018

DOI: 10.18287/2541-7525-2018-24-4-33-40



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024