Abstract:
In the paper the investigation continues with the help of definition Fourier fractional differentiation setting in the previous paper “To the question of fractional differentiation”. There were given explicit expressions of a fairly wide class of periodic functions and for functions represented in the form of wavelet decompositions. It was shown that for the class of exponential functions all derivatives with non-integer exponent are equal to zero. The found derivatives have a direct relationship to practical problems and let them use to solve a large class of problems associated with the study of phenomena such as thermal conduction, transmissions, electrical and magnetic susceptibility for a wide range of materials with fractal dimensions.