RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya // Archive

Vestnik SamU. Estestvenno-Nauchnaya Ser., 2023 Volume 29, Issue 1, Pages 7–14 (Mi vsgu692)

Mathematics

On sparse approximations of solutions to linear systems with orthogonal matrices

A. V. Kiptenko, I. M. Izbiakov

Samara National Research University, Samara, Russian Federation

Abstract: This article discusses a model for obtaining a sparse representation of a signal vector in $\mathbb{R}^k$, based on a system of linear equations with an orthogonal matrix. Such a representation minimizes a target function that combines the deviation from the exact solution and a chosen functional $J$. The functionals chosen are the Euclidean norm, the norm $|\cdot|_1$, and the quasi-norm $|\cdot|_0$. The Euclidean norm only allows for the exact solution, while the other two allow for a balance between the residual and the parameter $\lambda$ in the functional, resulting in sparser solutions. Graphs are plotted showing the dependence between the coordinates of the optimal vector and the parameter $\lambda$, and examples are provided.

Keywords: sparse representations, objective function, minimization of the objective function, norms, pseudonorms, admissible error level.

UDC: 51-74; 517.18

Received: 18.01.2023
Revised: 28.02.2023
Accepted: 30.05.2023

DOI: 10.18287/2541-7525-2023-29-1-7-14



© Steklov Math. Inst. of RAS, 2025