RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya // Archive

Vestnik SamU. Estestvenno-Nauchnaya Ser., 2024 Volume 30, Issue 1, Pages 23–30 (Mi vsgu725)

Mathematics

Some auxiliary estimates for solutions to non-uniformly degenerate second-order elliptic equations

S. T. Huseynov, M. J. Aliyev

Baku State University, Baku, Republic of Azerbaijan

Abstract: We consider a class of second order elliptic equations in divergence form with non-uniform exponential degeneracy. The method used is based on the fact that the degeneracy rates of the eigenvalues of the matrix $|| a_{ij}(x)||$ (function $\lambda_i(x)$) are not the functions of unusual norm $|x|$, but of some anisotropic distance $| x|_{{a}^{-}}$. We assume that the Dirichlet problem for such equations is solvable in the classical sense for every continuous boundary function in any normal domain $\Omega$.
Estimates for the weak solutions of Dirichlet problem near the boundary point are obtained, and Green's functions for second order non-uniformly degenerate elliptic equations are constructed.

Keywords: uniform ellipticity, non-uniform degeneration spaces, fundamental solution.

UDC: 517.956

Received: 15.01.2024
Revised: 19.02.2024
Accepted: 28.02.2024

DOI: 10.18287/2541-7525-2024-30-1-23-30



© Steklov Math. Inst. of RAS, 2025