RUS  ENG
Full version
JOURNALS // Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy // Archive

Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2021 Volume 8, Issue 2, Pages 295–304 (Mi vspua116)

MATHEMATICS

Different types of stable periodic points of diffeomorphism of a plane with a homoclinic orbit

E. V. Vasil'eva

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

Abstract: A diffeomorphism of the plane into itself with a fixed hyperbolic point is considered; the presence of a nontransverse homoclinic point is assumed. Stable and unstable manifolds touch each other at a homoclinic point; there are various ways of touching a stable and unstable manifold. In the works of Sh. Newhouse, L. P. Shilnikov and other authors, studied diffeomorphisms of the plane with a nontranverse homoclinic point, under the assumption that this point is a tangency point of finite order. It follows from the works of these authors that an infinite set of stable periodic points can lie in a neighborhood of a homoclinic point; the presence of such a set depends on the properties of the hyperbolic point. In this paper, it is assumed that a homoclinic point is not a point at which the tangency of a stable and unstable manifold is a tangency of finite order. Allocate a countable number of types of periodic points lying in the vicinity of a homoclinic point; points belonging to the same type are called n-pass (multi-pass), where n is a natural number. In the present paper, it is shown that if the tangency is not a tangency of finite order, the neighborhood of a nontransverse homolinic point can contain an infinite set of stable single-pass, double-pass, or three-pass periodic points with characteristic exponents separated from zero.

Keywords: diffeomorphism, nontransverse homoclinic point, stability, characteristic exponents.

UDC: 517.925.53

MSC: 37C75, 37C29, 34C37

Received: 23.10.2020
Revised: 13.11.2020
Accepted: 17.12.2020

DOI: 10.21638/spbu01.2021.209


 English version:
Vestnik St. Petersburg University, Mathematics, 2021, 8:3, 180–186


© Steklov Math. Inst. of RAS, 2024