RUS  ENG
Full version
JOURNALS // Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy // Archive

Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2020 Volume 7, Issue 1, Pages 15–27 (Mi vspua199)

This article is cited in 1 paper

MATHEMATICS

Sharp jackson - Chernykh type inequality for spline approximations on the line

O. L. Vinogradov

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

Abstract: An analog of the Jackson - Chernykh inequality for spline approximations in the space $L_2(\mathbb{R})$ is established. For $r \in \mathbb{N}$, $\sigma > 0$, we denote by $A_{\sigma r}(f)_2$ the best approximation of a function $f \in L_2(\mathbb{R})$ by the space of splines of degree $r$ and of minimal defect with knots $\frac{j \pi}{\sigma}$, $j \in \mathbb{Z}$, and by $\omega(f, \delta)$ its first order modulus of continuity in $L_2(\mathbb{R})$. The main result of the paper is the following. For every $f \in L_2(\mathbb{R})$
$$A_{\sigma r}(f)_2 \leqslant \frac{1}{\sqrt{2}}\omega(f,\frac{\theta_r \pi}{\sigma})_2$$
, where $\varepsilon_r$ is the positive root of the equation
$$\frac{4 \varepsilon^2(ch \frac{\pi \varepsilon}{\tau}-1)}{ch \frac{\pi \varepsilon}{\tau}+\cos \frac{\pi}{\tau}}= \frac{1}{3^{2r-2}}, \tau = \sqrt{1-\varepsilon^2}$$
, $\theta_r = \frac{1}{\sqrt{1-\varepsilon_r^2}}$. The constant $\frac{1}{\sqrt{2}}$ cannot be reduced on the whole class $L_2(\mathbb{R})$, even if one insreases the step of the modulus of continuity.

Keywords: Jackson inequality, splines, sharp constants.

UDC: 517.5

MSC: 41A15, 41A17, 41A44

Received: 03.06.2019
Revised: 11.08.2019
Accepted: 19.09.2019

DOI: 10.21638/11701/spbu01.2020.102


 English version:
Vestnik St. Petersburg University, Mathematics, 2020, 7:1, 10–19


© Steklov Math. Inst. of RAS, 2025