RUS  ENG
Full version
JOURNALS // Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy // Archive

Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2025 Volume 12, Issue 2, Pages 256–268 (Mi vspua353)

MATHEMATICS

An example of complete alternance in multidimensional case

V. N. Malozemov, A. V. Plotkin

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

Abstract: On a simplex in $n$-dimensional Euclidean space we define a function $H(x)$ with a value at the point $x = (x_1, . . . , x_n)$ equal to the harmonic mean of the numbers $x_1, . . . , x_n$. We consider a problem of uniform approximation of function $H(x)$ on a simplex with linear functions. We find the only solution to the problem. It has a complete alternance. The existence of complete alternance guarantees the strong uniqueness of the solution. We find an exact constant of strong uniqueness.

Keywords: Chebyshev approximations, multidimensional alternance, strong uniqueness, constant of strong uniqueness.

UDC: 517.518.826

MSC: 41A44, 41A63

Received: 14.06.2024
Revised: 14.11.2024
Accepted: 21.11.2024



© Steklov Math. Inst. of RAS, 2025