RUS  ENG
Full version
JOURNALS // Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy // Archive

Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2022 Volume 9, Issue 2, Pages 229–244 (Mi vspua5)

MATHEMATICS

Higher criteria for the regularity of a one-dimensional local field

S. V. Vostokova, P. N. Pitalab, V. M. Polyakovc

a St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
b St Petersburg Electrotechnical University “LETI”, 5, ul. Professora Popova, StPetersburg, 197022, Russian Federation
c St Petersburg Department of Steklov Mathematical Institute of the Russian Academy of Sciences, 27, nab. r. Fontanki, StPetersburg, 191023, Russian Federation

Abstract: The concept of irregularity of formal modules in one-dimensional local fields is considered. A connection is obtained between the irregularity of all unramified extensions $M/L$ and the ramification index $e_{(L/K)}$ for a sufficiently wide class of formal groups. The notion of s-irregularity for natural s is introduced (generalization of the notion of irregularity to the case of roots $[\pi^s]$), and similar criteria for irregularity are proved for it for the case of generalized and relative formal Lubin-Tate modules.

Keywords: regular formal modules, formal modules, formal groups, local fields.

UDC: 512.741

MSC: 11S31

Received: 17.10.2021
Revised: 25.11.2021
Accepted: 02.12.2021

DOI: 10.21638/spbu01.2022.205


 English version:
Vestnik St. Petersburg University, Mathematics, 2022, 9:2, 229–244

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025