RUS  ENG
Full version
JOURNALS // Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy // Archive

Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2021 Volume 8, Issue 3, Pages 467–474 (Mi vspua96)

MATHEMATICS

On a question concerning $D4$-modules

S. das

Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore-641407, India

Abstract: An $R$-module $M$ is called a $D4$-module if ‘whenever $M_1$ and $M_2$ are direct summands of $M$ with $M_1 +M_2 = M$ and $M_1 \cong M_2$, then $M_1 \setminus M_2$ is a direct summand of $M'$. Let $M = \oplus_{i \in I} M_i$ be a direct sum of submodules $M_i$ with $H_om(M_i, M_j) = 0$ for distinct $i$, $j \in I$. We show that $M$ is a $D4$-module if and only if for each $i \in I$ the module $M_i$ is a $D4$-module. This settles an open question concerning direct sums of $D4$-modules. Our approach is independent of the solution obtained by D’Este, Keskin Tütüncü and Tribak recently.

Keywords: sIP-modules, d4-modules.

UDC: 512.55

MSC: 16D10, 16D70

Received: 13.09.2020
Revised: 14.03.2020
Accepted: 19.03.2020

DOI: 10.21638/spbu01.2021.308



© Steklov Math. Inst. of RAS, 2024