RUS  ENG
Full version
JOURNALS // Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya // Archive

Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2019 Volume 15, Issue 2, Pages 199–211 (Mi vspui401)

Applied mathematics

A generalized Gibbs' lemma and a Wardrop equilibrium

V. N. Malozemov, N. A. Solovyeva

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

Abstract: In the article, a generalized Gibbs' lemma is stated and proved. A conclusion of this lemma corresponds to a definition of Wardrop equilibrium in transport networks. This allows us to naturally introduce a well known convex programming problem with linear constraints whose solution is a Wardrop equilibrium vector. The complicated definition of the Wardrop equilibrium is analyzed in detail (typical examples are given). The reason of the Braess paradox' appearance is specified. A large example, that illustrates how the Wardrop equilibrium vector changes when a road with zero driving time is added into the transport network, is also given.

Keywords: generalized Gibbs' lemma, Wardrop equilibrium, Braess paradox, convex programming.

UDC: 519.85

MSC: 90C90

Received: August 21, 2018
Accepted: March 15, 2019

DOI: 10.21638/11701/spbu10.2019.204



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025