Abstract:
In the article, a generalized Gibbs' lemma is stated and proved. A conclusion of this lemma corresponds to a definition of Wardrop equilibrium in transport networks. This allows us to naturally introduce a well known convex programming problem with linear constraints whose solution is a Wardrop equilibrium vector. The complicated definition of the Wardrop equilibrium is analyzed in detail (typical examples are given). The reason of the Braess paradox' appearance is specified. A large example, that illustrates how the Wardrop equilibrium vector changes when a road with zero driving time is added into the transport network, is also given.