Abstract:
We consider the Sturm — Liouville problem with discontinuous nonlinearity, control and perturbation. Previously obtained results for equations with a spectral parameter and a discontinuous operator are applied to this problem. By the variational method, we have established theorems on the existence of solutions to the Sturm — Liouville problem with discontinuous nonlinearity and to the optimal control problem, as well as on topological properties of the set of the acceptable “control — state” pairs. A one-dimensional analog of the Gol'dshtik model for separated flows of an incompressible fluid with control and perturbation is given as an application.