RUS  ENG
Full version
JOURNALS // Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya // Archive

Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2024 Volume 20, Issue 4, Pages 520–533 (Mi vspui643)

Control processes

Development and verification of a computational model of the magnetic system of the “Beta-decay” experimental facility, calculation of spatial distributions of fields and forces

V. M. Amoskova, V. N. Vasilieva, A. D. Groshevaab, O. A. Kovalchuka, V. P. Kukhtina, E. A. Lamzina, D. D. Melnikovab, A. N. Murashkinc, D. A. Ovsyannikovb, A. P. Serebrovc, S. E. Sychevskyab

a D. V. Efremov Institute of Electrophysical Apparatus, 3, Doroga na Metallostroy, St. Petersburg, 196641, Russian Federation
b St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
c Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute”, 1, mkr. Orlova roshñha, Gatchina, 188300, Russian Federation

Abstract: The work is devoted to the development and testing of a computational model of the precision magnetic system of the experimental facility “Beta-decay” for measuring the correlation coefficients of the neutron beta-decay, created at the Scientific Research Center “Kurchatov Institute”. The magnetic field of the system in its various configurations is studied, and the possibility of applying an adapted geometric model to calculations is also investigated. The distributions of magnetic fields and forces arising in the system are calculated. Verification of the model is carried out by comparing the results of calculations performed by several independent software. The results of numerical modeling coincide with the required accuracy for all software packages used, in particular, the estimate of the relative deviation of the force values does not exceed 3 %.

Keywords: computational models, magnetic systems, magnetic fields.

UDC: 621.3.038, 537.634

MSC: 65Z05

Received: August 11, 2024
Accepted: October 4, 2024

DOI: 10.21638/spbu10.2024.407



© Steklov Math. Inst. of RAS, 2025