RUS  ENG
Full version
JOURNALS // Russian Universities Reports. Mathematics // Archive

Russian Universities Reports. Mathematics, 2019 Volume 24, Issue 127, Pages 241–251 (Mi vtamu150)

Scientific articles

Asymptotics for the Radon transform on hyperbolic spaces

N. B. Andersena, M. Flensted-Jensenb

a Aarhus University
b University of Copenhagen

Abstract: Let $G/H$ be a hyperbolic space over $\Bbb R,$ $\Bbb C$ or $\Bbb H,$ and let $K$ be a maximal compact subgroup of $G.$ Let $D$ denote a certain explicit invariant differential operator, such that the non-cuspidal discrete series belong to the kernel of $D.$ For any $L^2$-Schwartz function $f$ on $G/H,$ we prove that the Abel transform ${\mathcal A}(Df)$ of $Df$ is a Schwartz function. This is an extension of a result established in [2] for $K$-finite and $K\cap H$-invariant functions.

Keywords: hyperbolic spaces, Radon transform, cuspidal discrete series, Abel transform.

UDC: 517.986.66

Received: 21.05.2019

DOI: 10.20310/2686-9667-2019-24-127-241-251



© Steklov Math. Inst. of RAS, 2024