RUS  ENG
Full version
JOURNALS // Russian Universities Reports. Mathematics // Archive

Russian Universities Reports. Mathematics, 2023 Volume 28, Issue 142, Pages 155–168 (Mi vtamu286)

Scientific articles

Hermite functions and inner product in Sobolev space

M. A. Boudref

University of Bouira

Abstract: Let us consider the orthogonal Hermite system $\left\{ \varphi_{2n}(x)\right\} _{n\geq 0}$ of even index defined on $\left( -\infty,\infty \right),$ where
\begin{equation*} \varphi _{2n}(x)=\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{\left( 2n\right) !}\pi ^{\frac{1}{4}}2^{n}}H_{2n}(x), \end{equation*}
by $H_{2n}(x)$ we denote a Hermite polynomial of degree $2n.$ In this paper, we consider a generalized system $\left\{ \psi_{r,2n}(x)\right\} $ with $r>0,$ $n\geq 0$ which is orthogonal with respect to the Sobolev type inner product on $\left(-\infty ,\infty \right),$ i.e.
\begin{equation*} \langle f,g \rangle =\lim_{t\rightarrow -\infty }\sum_{k=0}^{r-1}f^{\left(k\right) }(t)g^{\left( k\right) }(t)+\int_{-\infty }^{\infty }f^{\left(r\right) }(x)g^{\left( r\right) }(x)\rho (x)dx \end{equation*}
with $\rho (x)=e^{-x^{2}},$ and generated by $\left\{\varphi_{2n}(x)\right\}_{n\geq 0}.$ The main goal of this work is to study some properties related to the system $\left\{ \psi_{r,2n}(x)\right\}_{n\geq 0},$
\begin{gather*} \psi _{r,n}(x)=\frac{(x-a)^{n}}{n!},\quad n=0,1,2,\ldots,r-1, \\[2pt] \psi _{r,r+n}(x)=\frac{1}{(r-1)!}\int_{a}^{b}(x-t)^{r-1}\varphi _{n}(t)dt, \quad n=0,1,2,\ldots\, . \end{gather*}
We study the conditions on a function $f(x),$ given in a generalized Hermite orthogonal system, for it to be expandable into a generalized mixed Fourier series as well as the convergence of this Fourier series. The second result of the paper is the proof of a recurrent formula for the system $\left\{ \psi _{r,2n}(x)\right\} _{n\geq 0}.$ We also discuss the asymptotic properties of these functions, and this concludes our contribution.

Keywords: inner product, Sobolev space, Hermite polynomials.

UDC: 517.518.36

MSC: 42C10

Received: 08.02.2023
Accepted: 09.06.2023

Language: English

DOI: 10.20310/2686-9667-2023-28-142-155-168



© Steklov Math. Inst. of RAS, 2024