RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023 Number 84, Pages 5–13 (Mi vtgu1012)

MATHEMATICS

Tensor product of incidence algebras and group algebras

I. V. Dudin, P. A. Krylov

Tomsk State University, Tomsk, Russian Federation

Abstract: Let $I(X, R)$ and $I(Y, S)$ be incidence algebras, where $X$ and $Y$ are preordered sets, $R$ and $S$ are algebras over some commutative ring $T$. We prove the existence of a homomorphism of algebras $I(X, R)\otimes_T I(Y, S)\to I(X\times Y, R\otimes_T S)$. If $X$ and $Y$ are finite sets, then there is an isomorphism. For arbitrary groups $G$ and $H$, it is proved that the isomorphism of algebras $R[G]\otimes_T S[H]\cong (R\otimes_T S)[G\times H]$ is valid.

Keywords: tensor product, incidence algebras, group algebra.

UDC: 512.552

MSC: 16R99

Received: 20.04.2023
Accepted: July 10, 2023

DOI: 10.17223/19988621/84/1



© Steklov Math. Inst. of RAS, 2024