RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013 Number 6(26), Pages 20–26 (Mi vtgu357)

MATHEMATICS

Conformal mapping onto a circular polygon with double simmetry

I. A. Kolesnikov

Tomsk State University

Abstract: A conformal mapping of the unit disk $E=\{\xi\in\boldsymbol C\colon|\xi|<1\}$ onto a circular $2n$-gon, $n\in\boldsymbol N\setminus\{1\}$, with $n$-fold symmetry of rotation relatively to the point $w=0$ and with symmetry relatively to the straight $l=\left\{w\in\boldsymbol C\colon\operatorname{arg}w=\frac\pi n\right\}$ has been obtained in the integral form.

Keywords: conformal mapping, symmetry of rotation, circular polygon, Schwarz derivative.

UDC: 517.54

Received: 05.10.2013



© Steklov Math. Inst. of RAS, 2024