MATHEMATICS
Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups
A. G. Sedykh,
A. S. Berezina Kemerovo Institute of Plekhanov Russian University of Economics, Kemerovo, Russian Federation
Abstract:
An irreducible
$\mathrm{SO(3)}$-structure can be defined by means of a symmetric tensor field
$T$ of type
$(0,3)$ on a manifold
$M$.
Definition 1. An $\mathrm{SO(3)}$ structure on a $5$-
dimensional Riemannian manifold $(M, g)$ is a structure defined by means of a rank $3$ tensor field $T$ for which the associated linear map
$X\to T_X\in End(TM)$,
$X\in TM$,
satisfies the following condition:
- symmetricity, i. e. $g(X,T_Y Z) = g(Z,T_Y X) = g(X,T_Z Y)$,
- the trace $tr(T_X) = 0$,
- for any vector field $X \in TM$,
$$
T_X^2X=g(X,X)X.
$$
In any tangent space, it is possible to choose an adapted basis
$\{e_1,e_2,e_3,e_4,e_5\}$ in which metrics
$g$ and tensor
$T$ have the canonical form
$g_{ij}=\delta_{ij}$ and
$$
\begin{gathered}
T=\frac12e^1\left(6(e^2)^2+6(e^4)^2-2(e^1)^2-3(e^2)^2-3(e^5)^2\right)+\\
+\frac{3\sqrt3}2e^4\left((e^5)^2-(e^3)^2\right)+3\sqrt3e^2e^3e^5.
\end{gathered}
$$
Her,
$\{e_1,e_2,e_3,e_4,e_5\}$ is the dual coframe. Polarising the expression yields components of
$T$:
$$
\begin{gathered}
t_{111}=-1,\quad t_{122}=1, \quad t_{144}=1, \quad t_{133}=-\frac12,\quad t_{155}=-\frac12,\\
t_{433}=-\frac{\sqrt3}2,\quad t_{455}=\frac{\sqrt3}2,\quad t_{235}=\frac{\sqrt3}2.
\end{gathered}
$$
Thus, an irreducible
$\mathrm{SO(3)}$-structure on a manifold is a Riemannian structure
$g$ and a tensor
field
$T$ possessing properties 1–3.
Theorem 1. The stabilizer of $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$ embedded into $\mathrm{O(5)}$.
Since the stabilizer
$T_{ijk}$ is an irreducible
$\mathrm{SO(3)}$, its orbit under the action of
$\mathrm{O(5)}$ is a 7-dimension homogeneous space
$\mathrm{O(5)/SO(3)}$.
A homogeneous Berger space
$\mathrm{SO(5)/SO(3)}$ is topologically equivalent to an
$\mathrm{S^3}$ fiber
bundle over
$\mathrm{S^4}$.
With respect to the biinvariant scalar product
$\langle A,B\rangle=-\frac1{10}tr(AB)$ on
$\mathrm{SO(5)}$, a decomposition
of the Lie algebra
$\mathrm{so(5)}$ into a direct sum
$\mathrm{so(5)} = \mathrm{so(3)} + V$ of the Lie algebra and
$\mathrm{ad(SO(3))}$ of an invariant space
$V$ has been obtained.
Examples of deformations of the structural tensor
$T$ by geodesics
$g_t$ of the homogeneous space
$\mathrm{SO(5)/SO(3)}$ are considered, the covariant divergence of the obtained structure tensor is calculated, and the property of nearly integrability is investigated.
Keywords:
special $\mathrm{SO(3)}$ structure, homogeneous Berger space, Lie group.
UDC:
514.76 Received: 14.11.2014