RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014 Number 6(32), Pages 35–45 (Mi vtgu426)

MATHEMATICS

Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups

A. G. Sedykh, A. S. Berezina

Kemerovo Institute of Plekhanov Russian University of Economics, Kemerovo, Russian Federation

Abstract: An irreducible $\mathrm{SO(3)}$-structure can be defined by means of a symmetric tensor field $T$ of type $(0,3)$ on a manifold $M$.
Definition 1. An $\mathrm{SO(3)}$ structure on a $5$-dimensional Riemannian manifold $(M, g)$ is a structure defined by means of a rank $3$ tensor field $T$ for which the associated linear map $X\to T_X\in End(TM)$, $X\in TM$, satisfies the following condition:
In any tangent space, it is possible to choose an adapted basis $\{e_1,e_2,e_3,e_4,e_5\}$ in which metrics $g$ and tensor $T$ have the canonical form $g_{ij}=\delta_{ij}$ and
$$ \begin{gathered} T=\frac12e^1\left(6(e^2)^2+6(e^4)^2-2(e^1)^2-3(e^2)^2-3(e^5)^2\right)+\\ +\frac{3\sqrt3}2e^4\left((e^5)^2-(e^3)^2\right)+3\sqrt3e^2e^3e^5. \end{gathered} $$

Her, $\{e_1,e_2,e_3,e_4,e_5\}$ is the dual coframe. Polarising the expression yields components of $T$:
$$ \begin{gathered} t_{111}=-1,\quad t_{122}=1, \quad t_{144}=1, \quad t_{133}=-\frac12,\quad t_{155}=-\frac12,\\ t_{433}=-\frac{\sqrt3}2,\quad t_{455}=\frac{\sqrt3}2,\quad t_{235}=\frac{\sqrt3}2. \end{gathered} $$

Thus, an irreducible $\mathrm{SO(3)}$-structure on a manifold is a Riemannian structure $g$ and a tensor field $T$ possessing properties 1–3.
Theorem 1. The stabilizer of $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$ embedded into $\mathrm{O(5)}$.
Since the stabilizer $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$, its orbit under the action of $\mathrm{O(5)}$ is a 7-dimension homogeneous space $\mathrm{O(5)/SO(3)}$.
A homogeneous Berger space $\mathrm{SO(5)/SO(3)}$ is topologically equivalent to an $\mathrm{S^3}$ fiber bundle over $\mathrm{S^4}$.
With respect to the biinvariant scalar product $\langle A,B\rangle=-\frac1{10}tr(AB)$ on $\mathrm{SO(5)}$, a decomposition of the Lie algebra $\mathrm{so(5)}$ into a direct sum $\mathrm{so(5)} = \mathrm{so(3)} + V$ of the Lie algebra and $\mathrm{ad(SO(3))}$ of an invariant space $V$ has been obtained.
Examples of deformations of the structural tensor $T$ by geodesics $g_t$ of the homogeneous space $\mathrm{SO(5)/SO(3)}$ are considered, the covariant divergence of the obtained structure tensor is calculated, and the property of nearly integrability is investigated.

Keywords: special $\mathrm{SO(3)}$ structure, homogeneous Berger space, Lie group.

UDC: 514.76

Received: 14.11.2014



© Steklov Math. Inst. of RAS, 2024