RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015 Number 2(34), Pages 30–40 (Mi vtgu448)

This article is cited in 1 paper

MATHEMATICS

On $2$-ordered groups

G. G. Pestova, A. I. Zabarinab, A. A. Tobolkinc, E. A. Fominab

a Tomsk State University, Tomsk, Russian Federation
b Tomsk State Pedagogical University, Tomsk, Russian Federation
c Tomsk Academic Lyceum, Tomsk, Russian Federation

Abstract: Let $h(x, y, z)$ denote the standard orientation of the plane $\mathbf{R}^2$. Let $M$ be a non-empty set, $\zeta: M\to\{0, +1, -1\}$.
If for every subset $A$ of a set $M$, $|A|\leqslant 5$, there exists a map $\phi: A\to\mathbf{R}^2$, such that $x, y, z\in A$ implies
$$ \zeta(x, y, z)=\eta(\phi(x), \phi(y), \phi(z)), $$
then $(M, \zeta)$ is called a $2$-ordered set and $\zeta$ is called a $2$-order function on $M$.
If $\zeta$ is a $2$-order function on a group $G$ such that for every $x, y, z, a$ from the group $G$ the equality
$$ \zeta(ax, ay, az)=\zeta(xa, ya, za)=\zeta(x, y, z) $$
holds, then $G$ is said to be a $2$-ordered group.
The paper contains new examples of $2$-ordered groups. It is proved that every $2$-ordered group contains only one involution or none. A criterion is formulated for a straight line in a $2$-ordered group $G$ to be a subgroup of $G$.

Keywords: two-dimensional order, $2$-ordered group, involution, straight line.

UDC: 519.46

Received: 15.03.2015

DOI: 10.17223/19988621/34/3



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024