RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015 Number 6(38), Pages 27–32 (Mi vtgu490)

This article is cited in 4 papers

MATHEMATICS

On commuting elements of a group

A. I. Zabarina, U. A. Guselnikova, E. A. Fomina

Tomsk State Pedagogical University, Tomsk, Russian Federation

Abstract: Let $G$ be an arbitrary group. An element g is trivially commuting if it does not commute with any other elements but itself and unity. We call an element as non-trivially commuting if it is not trivially commuting. Sets of all trivially commuting elements, non-trivially commuting elements, and involutions of the group are denoted by $U$, $W$$J$.
Proposition 1. $U\subset J$.
Proposition 2.
Theorem 3. If the set of trivially commuting elements of a finite group is not empty, they are exactly half to the group: let $|G|=n$, $|U|\ne0$, then $|U|=|W|$.
Corollary 4. Let $|G|= n$, $|U|\ne0$, then
Theorem 5. Let $|G|=n$, $|U|\ne0$, then $W$ is a commutative normal divisor of the group $G$.
Proposition 6. Let $\langle A, \cdot\rangle$, be an Abelian group with the involution and $\langle D(A), \circ\rangle$ be a generalized dihedral group. Then the set $U$ of trivial commuting elements of the group $D(A)$ is empty.
Theorem 7. Let $\langle D(A), \circ\rangle$ be a generalized dihedral group and let the group $A$ have no involutions. Then the set $U$ of trivially commuting elements of the group $D(A)$ is the set $\{(a, -1)\mid a\in A\}$, $|U|=|W|$.
Theorem 8. Let $\langle G, \cdot\rangle$ be a group, the set of involutions $J$ of the group $G$ be not empty, and the set $H=G\setminus J$ be a subgroup, $H\ne\{e\}$. Then

Keywords: group, involution, commuting element, conjugate element, generalized dihedral group.

UDC: 512.543

Received: 20.10.2015

DOI: 10.17223/19988621/38/3



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024