Abstract:
The article deals with the problem of flow-rate balance in the disposal system of noxious gases from an industrial building of aluminum production. This system appears to be a highly branched network about 2 kilometers long, with the baths arranged into several groups of a various number of baths in each. Our team set a problem aimed at evaluating the possibility of the flow balance between the groups so that the each bath could fall within a fixed volume of the removable gas. Normally, the modeling of such problems applies methods of the theory of hydraulic circuits, which requires the system to be a set of nodes and branches. However, the considered system includes a gathering manifold of a complex geometry, which cannot be represented as a set of network elements. Thus, the solving of the problem was carried out using an original 1D/3D hybrid algorithm intended for solving of the multiscale problems of hydrodynamics. A particular feature of this algorithm, based on a SIMPLE procedure, is a common equation for the pressure correction calculated for the entire computational region. The unification of two parts of the problem in the pressure field allows providing a coherence of the solution, a rapid convergence, and a high speed of calculations in comparison with the usual methods of solving such (multiscale) problems, which suppose the separate use of the spatial and network models interrelated with a data exchange on the contact boundary. As a result of the calculation, the hydraulic resistance of the balancing shutter and the total evacuation in a gas purification system for the balanced version have been determined.
Keywords:numerical modeling, CFD, theory of hydraulic circuits, 1D/3D hybrid method, gas purification system.