Abstract:
The mathematical model of gasless combustion of a layered composition is considered. Inner layer of the composition consists of an inert low-melting metal. Other layers consist of a highly exothermic gasless mixture. In the inner layer, metal melts during combustion of the adjacent layers. Affected by surface tension forces, the melt flows into the porous combustion products of gasless mixture to form a composite material. The capillary flow of melt in the porous channels is limited by skeleton temperature equal to the melting point. The time spent for passing through an inert layer by combustion wave is found depending on the thickness and thermal conductivity of the layer. The modes of synthesis for layered composite materials in combustion regime are determined. The dynamics of structure formation of the composite materials is considered depending on the thickness of inner metal layer and on the external heat exchange coefficient.