RUS  ENG
Full version
JOURNALS // Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics] // Archive

Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, Issue 8, Pages 59–63 (Mi vtpmk367)

This article is cited in 2 papers

Differential Geometry

On a variational property of geodesics in Riemannian and Finsler spaces

J. Mikěa, I. Hinterleitnerb

a Dept. of Algebra and Geometry, Palacky University, Olomouc, Czech Republic
b Inst. of Mathematics, FSI VUT Brno, Czech Republic

Abstract: A new varionational property of geodesics in (pseudo-) Riemannian and Finsler spaces has been found. It is proved the only geodesics $x=x(t)$ with the canonical parameter are stacionary with respect to the integral $\int^{t_1}_{t_0}f(g_{ij}(x,\dot{x})\dot{x}^i\dot{x}^j)dt$, where $f$ ($f'\neq 0$) is a square free two differentiable function, $g_{ij}$ are components of the metric tensor, and $\dot{x}(t)=dx(t)/dt$.

Keywords: geodesics, varianational problem, Riemannian space, Finsler space.

UDC: 514.7

Received: 17.12.2007
Revised: 18.02.2008



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025