RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012 Issue 1, Pages 26–31 (Mi vuu307)

MATHEMATICS

On the question of extended convexity of Green operator

G. G. Islamov

Udmurt State University, Izhevsk, Russia

Abstract: Let $Q$ be a differential operator of order $m-1$, $2\leqslant m \leqslant n$, for which $(a, b)$ is the interval of nonoscillation, and the Green's operator $G\colon L[a, b]\to W^n[a, b]$ of boundary value problem $Lx=f$, $l_i(x)=0$, $i=1,\dots,n$ has the property of generalized convexity: $QGP>0$ for some linear homeomorphism $P$ of Lebesgue space $L[a,b]$. Under some conditions, we prove, that the perturbed boundary value problem $Lx=PVQx+f$, $l_i(x)=0$, $i=1,\dots,n$ is also uniquely solvable in the Sobolev space $W^n[a,b]$ and the Green's operator $\widehat G$ inherits the property of $G$, that is $Q\widehat GP>0$.

Keywords: Green's operator, extended convexity.

UDC: 517.929

MSC: 34K06, 34K10

Received: 01.02.2012

DOI: 10.20537/vm120103



© Steklov Math. Inst. of RAS, 2025