RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013 Issue 3, Pages 20–27 (Mi vuu386)

This article is cited in 2 papers

MATHEMATICS

On compact $T_1$-spaces

M. E. Voronov

Department of Algebra and Topology, Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: We consider spaces, any subspaces of which are compact. We call such spaces hereditarily compact. The present work covers questions on the existence and methods of constructing hereditarily compact $T_1$-topologies. We prove the existence of $2^\tau$ pairwise incomparable hereditarily compact $T_1$-topologies on an infinite set $X$ of power $\tau$. The characteristics of hereditarily compact spaces are obtained. It is proved that the Tychonoff product of a finite number of hereditarily compact $T_1$-spaces is a hereditarily compact $T_1$-space, but the Tychonoff product of an infinite number of nonsingleton hereditarily compact $T_1$-spaces is not hereditarily compact.

Keywords: compactness, minimal $T_1$-topology, Tychonoff product.

UDC: 515.122.22+515.122.252

MSC: 54D10, 54D30

Received: 22.07.2013



© Steklov Math. Inst. of RAS, 2024