RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013 Issue 4, Pages 79–87 (Mi vuu403)

This article is cited in 2 papers

MATHEMATICS

Error of interpolation by sixth-degree polynomials on a triangle

N. V. Latypova

Department of Mathematical Analysis, Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: The paper considers Birkhoff-type triangle-based interpolation to a two-variable function by sixth-degree polynomials. Similar estimates are automatically transferred to error estimates of related finite element method. The error estimates for the given elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that the estimates obtained are unimprovable. Unimprovability is understood in a following sense: there exists function from the given class and there exist absolute positive constants independent of triangulation such that estimates from below are valid for any nondegenerate triangle.

Keywords: error of interpolation, piecewise polynomial function, triangulation, finite element method.

UDC: 517.518

MSC: 41A05

Received: 19.10.2013

DOI: 10.20537/vm130408



© Steklov Math. Inst. of RAS, 2025