RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015 Volume 25, Issue 2, Pages 244–247 (Mi vuu480)

MATHEMATICS

About one type of sequences that are not a Schauder basis in Hilbert spaces

A. Sh. Shukurov

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, ul. B. Vahabzade, 9, Baku, AZ1141, Azerbaijan

Abstract: Let $H$ be a Hilbert space and a (not necessarily bounded) sequence of its elements $\{e_n\}_{n=1}^{\infty}$ has a bounded subsequence $\{e_{n_k}\}_{k=1}^{\infty}$ such that $|(e_{n_k},e_{n_m})| \geqslant \alpha > 0$ for all sufficiently large $k,m \in N, k \neq m$. It is proved that such a sequence $\{e_n\}_{n=1}^{\infty}$ is not a basic sequence and thus is not a Schauder basis in $H$. Note that the results of this paper generalize and offer a short and more simple proof of some recent results obtained in this direction.

Keywords: Schauder basis, basic sequence, Hilbert space, orthonormal sequence and orthonormal basis, weakly convergent sequences.

UDC: 517.982

MSC: 46A35, 46B15, 46C05

Received: 01.04.2015

Language: English

DOI: 10.20537/vm150208



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025