RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015 Volume 25, Issue 3, Pages 297–305 (Mi vuu485)

MATHEMATICS

On rational approximations of functions and eigenvalue selection in Werner algorithm

O. E. Galkin, S. Yu. Galkina

Nizhni Novgorod State University, pr. Gagarina, 23, Nizhni Novgorod, 603950, Russia

Abstract: The paper deals with the best uniform rational approximations (BURA) of continuous functions on compact (and even finite) subsets of real axis $\mathbb R$. The authors show that BURA does not always exist. They study the algorithm of Helmut Werner in more detail. This algorithm serves to search for BURA of the type $P_m/Q_n=\sum_{i=0}^ma_ix^i\big/\sum_{j=0}^nb_jx^j$ for functions on a set of $N=m+n+2$ points $x_1<\dots<x_N$. It can be used within the Remez algorithm of searching for BURA on a segment. The Werner algorithm calculates $(n+1)$ real eigenvalues $h_1,\dots,h_{n+1}$ for the matrix pencil $A-hB$, where $A$ and $B$ are some symmetric matrices. Each eigenvalue generates a rational fraction of the type $P_m/Q_n$ which is a candidate for the best approximation. It is known that at most one of these fractions is free from poles on the segment $[x_1,x_N]$, so the following problem arises: how to determine the eigenvalue which generates the rational fraction without poles? It is shown that if $m=0$ and all values $f(x_1),-f(x_2),\dots,(-1)^{n+2}f(x_{n+2})$ are different and the approximating function is positive (negative) at all points $x_1,\dots,x_{n+2}$, then this eigenvalue ranks $[(n+2)/2]$-th ($[(n+3)/2]$-th) in value. Three numerical examples illustrate this statement.

Keywords: best uniform rational approximations, rational approximations on finite sets, Remez algorithm, Werner algorithm, selection of eigenvalues in Werner algorithm.

UDC: 517.518.84

MSC: 65D15, 41A20

Received: 01.08.2015



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024