RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015 Volume 25, Issue 3, Pages 338–347 (Mi vuu488)

MATHEMATICS

Steady solitary wave solutions of the generalized sixth-order Boussinesq–Ostrovsky equation

A. I. Zemlyanukhin, A. V. Bochkarev

Department of Applied Mathematics and System Analysis, Saratov State Technical University, ul. Politekhnicheskaya, 77, Saratov, 410054, Russia

Abstract: An overview of models that lead to the nonintegrable Ostrovsky equation and its generalizations having no exact solitary-wave solutions is given. A brief derivation of the Ostrovsky equation for longitudinal waves in a geometrically nonlinear rod lying on an elastic foundation is performed. It is shown that in the case of axially symmetric propagation of longitudinal waves in a physically nonlinear cylindrical shell interacting with a nonlinear elastic medium the displacement component obeys the generalized sixth-order Boussinesq–Ostrovsky equation. We construct an exact kink-like solution of this equation, establish a connection with the generalized nonlinear Schrödinger (GNLS) equation and find the steady travelling wave solution of the GNLS in the form of simple soliton with monotonic or oscillating tails.

Keywords: nonlinear evolution equations, solitary-wave solutions, generalized nonlinear Schrödinger equation.

UDC: 517.95

MSC: 34A05, 35C08, 35Q55, 74J35

Received: 01.07.2015

Language: English

DOI: 10.20537/vm150304



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025