RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2016 Volume 26, Issue 1, Pages 79–86 (Mi vuu520)

This article is cited in 9 papers

MATHEMATICS

About asymptotical properties of solutions of difference equations with random parameters

L. I. Rodina, I. I. Tyuteev

Department of Mathematical Analysis, Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: We investigate the asymptotic behavior of solutions of difference equations. Their right-hand sides at given time depend not only on the value of state at the previous moment, but also on a random value from a given set $\Omega$. We obtain conditions of Lyapunov stability and asymptotic stability of the equilibrium for all values of random parameters and with probability one. We show that the problem of coexistence of stochastic cycles of different periods has a solution, which strongly differs from a known Sharkovsky result for a determined difference equation. Under some conditions, the existence of a stochastic cycle of length $k$ implies the existence of a cycle of any length $\ell>k$.

Keywords: difference equations with random parameters, Lyapunov stability, asymptotical stability, cyclic solution.

UDC: 517.935+517.938

MSC: 34A60, 37N35, 49J15, 93B03

Received: 20.01.2016

DOI: 10.20537/vm160107



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024