RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2019 Volume 29, Issue 4, Pages 569–582 (Mi vuu702)

This article is cited in 4 papers

MATHEMATICS

Constraints of asymptotic nature and attainability problems

A. G. Chentsovab, E. G. Pytkeevba

a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russia
b Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russia

Abstract: In control problems, construction and investigation of attainability domains and their analogs are very important. This paper addresses attainability problems in topological spaces. Constraints of asymptotic nature defined in the form of nonempty families of sets are used. The solution of the corresponding attainability problem is defined as an attraction set. Points of this attraction set (attraction elements) are realized in the class of approximate solutions which are nonsequential analogs of the Warga approximate solutions. Some possibilities of applying compactifiers are discussed. Questions of the realization of attraction sets up to a given neighborhood are considered. Some topological properties of attraction sets are investigated. An example with an empty attraction set is considered.

Keywords: attraction set, extension, topological space, compactness.

UDC: 517.9

MSC: 28A33

Received: 28.08.2019

Language: English

DOI: 10.20537/vm190408



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024