RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020 Volume 30, Issue 2, Pages 312–323 (Mi vuu727)

MATHEMATICS

Ultrafilters as admissible generalized elements under asymptotic constraints

A. G. Chentsovab

a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russia
b Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russia

Abstract: The problem of compliance with constraints of asymptotic nature (CAN) and its expansion in the class of ultrafilters (u/f) of widely understood measurable space are considered. The representation of a set of admissible generalized elements as an attraction set (AS) corresponding to the given system of CAN is investigated. In particular, the question about non-emptiness of the given AS under very general suppositions with respect to measurable structure for which corresponding u/f are defined, is investigated. The above-mentioned measurable structure is defined as a $\pi$-system with “zero” and “unit” ($\pi$-system is a nonempty family of sets closed with respect to finite intersections). The u/f family is equipped with topology of Wallman type.

Keywords: attraction set, topological space, ultrafilter.

UDC: 519.6

MSC: 05A05, 97N70, 97N80

Received: 28.02.2020

DOI: 10.35634/vm200212



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025