RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020 Volume 30, Issue 3, Pages 444–467 (Mi vuu735)

This article is cited in 3 papers

MATHEMATICS

Filters and linked families of sets

A. G. Chentsovab

a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russia
b Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russia

Abstract: Properties of ultrafilters (u/f) and maximal linked systems (MLS) on the widely understood measurable space (MS) and representations of linked (not necessarily maximal) families and filters on this MS are investigated. Conditions realizing maximality of linked families (systems) and natural representations for bitopological spaces (BTS) of u/f and MLS are established. Equipments of sets of linked families and filters corresponding to Wallman and Stone schemes are studied; the connection of these equipments with analogous equipments (with topologies) for u/f and MLS leading to above-mentioned BTS is studied too. Properties of linked family products for two (widely understood) MS are investigated. It is shown that MLS on the $\pi$-system product (that is, on the family of «measurable» rectangles) are limited to products of corresponding MLS on initial spaces.

Keywords: maximal linked system, family of sets, topology, ultrafilter.

UDC: 519.6

MSC: 93C83

Received: 03.08.2020

DOI: 10.35634/vm200307



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025