RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020 Volume 30, Issue 4, Pages 533–552 (Mi vuu740)

MATHEMATICS

Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model

M. S. Blizorukova, V. I. Maksimov

N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia

Abstract: In this paper, we consider the stable reconstruction problem of the unknown input of a distributed system of second order by results of inaccurate measurements of its solution. The content of the problem considered is as follows. We consider a distributed equation of second order. The solution of the equation depends on the input varying in the time. The input, as well as the solution, is not given in advance. At discrete times the solution of the equation is measured. These measurements are not accurate in general. It is required to design an algorithm for approximate reconstruction of the input that has dynamical and stability properties. The dynamical property means that the current values of approximations of the input are produced on-line, and the stability property means that the approximations are arbitrarily accurate for a sufficient accuracy of measurements. The problem refers to the class of inverse problems. The algorithm presented in the paper is based on the constructions of a stable dynamical inversion and on the combination of the methods of ill-posed problems and positional control theory.

Keywords: dynamical inversion, distributed system.

UDC: 517.71

MSC: 49J35, 91A24

Received: 03.09.2020

DOI: 10.35634/vm200401



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025