RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2021 Volume 31, Issue 1, Pages 116–131 (Mi vuu759)

This article is cited in 2 papers

COMPUTER SCIENCE

Online web navigation assistant

N. M. Aliabc, A. M. Gadallaha, H. A. Hefnya, B. A. Novikovc

a Cairo University, Giza, Egypt
b Port Said University, Port Said, Egypt
c National Research University Higher School of Economics, Saint Petersburg, Russia

Abstract: The problem of finding relevant data while searching the internet represents a big challenge for web users due to the enormous amounts of available information on the web. These difficulties are related to the well-known problem of information overload. In this work, we propose an online web assistant called OWNA. We developed a fully integrated framework for making recommendations in real-time based on web usage mining techniques. Our work starts with preparing raw data, then extracting useful information that helps build a knowledge base as well as assigns a specific weight for certain factors. The experiments show the advantages of the proposed model against alternative approaches.

Keywords: web mining, web personalization, link prediction, web usage mining, recommender systems, web log, web navigation assistant.

UDC: 004.048, 004.622, 004.657

MSC: 68T10, 68U35

Received: 08.07.2020

Language: English

DOI: 10.35634/vm210109



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024