RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2021 Volume 31, Issue 3, Pages 365–383 (Mi vuu775)

This article is cited in 1 paper

MATHEMATICS

Asymptotic distribution of hitting times for critical maps of the circle

Sh. A. Ayupova, A. A. Zhalilovba

a Institute of Mathematics of ASRUz, Tashkent, Uzbekistan
b Yeoju Technical Institute in Tashkent, Tashkent, Uzbekistan

Abstract: It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w. r. t. the Lebesgue measure.

Keywords: circle homeomorphism, critical point, rotation number, hitting time, thermodynamic formalism.

UDC: 517.9

MSC: 37A05, 28D05

Received: 24.02.2021

Language: English

DOI: 10.35634/vm210302



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025