RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2021 Volume 31, Issue 3, Pages 365–383 (Mi vuu775)

MATHEMATICS

Asymptotic distribution of hitting times for critical maps of the circle

Sh. A. Ayupova, A. A. Zhalilovba

a Institute of Mathematics of ASRUz, Tashkent, Uzbekistan
b Yeoju Technical Institute in Tashkent, Tashkent, Uzbekistan

Abstract: It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w. r. t. the Lebesgue measure.

Keywords: circle homeomorphism, critical point, rotation number, hitting time, thermodynamic formalism.

UDC: 517.9

MSC: 37A05, 28D05

Received: 24.02.2021

Language: English

DOI: 10.35634/vm210302



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024