Abstract:
The work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A. A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.
Keywords:pseudoparabolic equation, moisture transfer equation, locally one-dimensional scheme, stability, convergence of the difference scheme, additivity of the scheme.