RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2021 Volume 31, Issue 4, Pages 597–612 (Mi vuu789)

This article is cited in 3 papers

MATHEMATICS

New Hadamard-type inequalities via $(s,m_{1},m_{2})$-convex functions

B. Bayraktara, S. I. Buttb, Sh. Shaokatb, J. E. Nápoles Valdéscd

a Bursa Uludağ University, Gorükle Campus, 16059, Bursa, Turkey
b COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
c Universidad Nacional del Nordeste, Ave. Libertad, 5450, Corrientes, 3400, Argentina
d Universidad Tecnologica Nacional, St. French, 414, Resistencia, Chaco, 3500, Argentina

Abstract: The article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.

Keywords: convex function, Hadamard type inequality, Riemann-Liouville fractional integral, Hölder inequality, power mean inequality.

UDC: 517.518, 517.218, 517.928

MSC: 26A33, 26A51, 26D15

Received: 14.07.2021

Language: English

DOI: 10.35634/vm210405



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024