RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2021 Volume 31, Issue 4, Pages 629–639 (Mi vuu791)

This article is cited in 1 paper

MATHEMATICS

Liouville type theorems for solutions of semilinear equations on non-compact Riemannian manifolds

A. G. Losev, V. V. Filatov

Volgograd State University, pr. Universitetsky, 100, Volgograd, 400062, Russia

Abstract: It is proved that the Liouville function associated with the semilinear equation $\Delta u -g(x,u)=0$ is identical to zero if and only if there is only a trivial bounded solution of the semilinear equation on non-compact Riemannian manifolds. This result generalizes the corresponding result of S.A. Korolkov for the case of the stationary Schrödinger equation $ \Delta u-q (x) u = 0$. The concept of the capacity of a compact set associated with the stationary Schrödinger equation is also introduced and it is proved that if the capacity of any compact set is equal to zero, then the Liouville function is identically zero.

Keywords: Liouville type theorem, semilinear elliptic equations, Riemannian manifolds, massive sets, Liouville function.

UDC: 517.956.2

MSC: 58J05

Received: 06.07.2021

Language: English

DOI: 10.35634/vm210407



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025