Abstract:
In this paper, we consider translation-invariant Gibbs measures (TIGM) for the Blume–Capel HC-model in the case of a “generalized wand” on a second-order Cayley tree. An approximate critical value of $\theta_{cr}$ is found such that for $\theta \geq\theta_{cr}$ there is only one TIGM, and for $0<\theta<\theta_{cr}$ there are exactly three TIGMs in the case of “generalized wand” for the model under consideration. In addition, the (non)extreme problem for these measures is studied.