RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2022 Volume 32, Issue 2, Pages 278–297 (Mi vuu811)

This article is cited in 1 paper

MATHEMATICS

Inverse image of precompact sets and regular solutions to the Navier-Stokes equations

A. A. Shlapunova, N. N. Tarkhanovb

a Siberian Federal University, pr. Svobodnyi, 79, Krasnoyarsk, 660041, Russia
b Institut für Mathematik, Universität Potsdam, Karl-Liebknecht-Str., 24/25, Potsdam (Golm), 14476, Germany

Abstract: We consider the initial value problem for the Navier–Stokes equations over ${\mathbb R}^3 \times [0,T]$ with time $T>0$ in the spatially periodic setting. We prove that it induces open injective mappings ${\mathcal A}_s\colon B^{s}_1 \to B^{s-1}_2$ where $B^{s}_1$, $B^{s-1}_2$ are elements from scales of specially constructed function spaces of Bochner–Sobolev type parametrized with the smoothness index $s \in \mathbb N$. Finally, we prove that a map ${\mathcal A}_s$ is surjective if and only if the inverse image ${\mathcal A}_s ^{-1}(K)$ of any precompact set $K$ from the range of the map ${\mathcal A}_s$ is bounded in the Bochner space $L^{\mathfrak s} ([0,T], L^{{\mathfrak r}} ({\mathbb T}^3))$ with the Ladyzhenskaya–Prodi–Serrin numbers ${\mathfrak s}$, ${\mathfrak r}$.

Keywords: Navier–Stokes equations, regular solutions.

UDC: 517

MSC: 76N10, 35Q30, 76D05

Received: 21.01.2022
Accepted: 05.05.2022

Language: English

DOI: 10.35634/vm220208



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024