RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2022 Volume 32, Issue 3, Pages 463–485 (Mi vuu821)

This article is cited in 1 paper

MATHEMATICS

Local antimagic chromatic number for the corona product of wheel and null graphs

R. Shankar, M. Ch. Nalliah

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, VIT, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu, 632014, India

Abstract: Let $G=(V,E)$ be a graph of order $p$ and size $q$ having no isolated vertices. A bijection $f\colon E{\rightarrow}\left\{1,2,3,\ldots,q \right\}$ is called a local antimagic labeling if for all $uv\in E$, we have $w(u)\neq w(v)$, the weight $w(u)=\sum_{e\in E(u)}f(e)$, where $E(u)$ is the set of edges incident to $u$. A graph $G$ is local antimagic, if $G$ has a local antimagic labeling. The local antimagic chromatic number $\chi_{la}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local antimagic labelings of $G$. In this paper, we completely determine the local antimagic chromatic number for the corona product of wheel and null graphs.

Keywords: local antimagic labeling, local antimagic chromatic number, corona product, wheel graph.

UDC: 519.1

MSC: 05C78, 05C15

Received: 12.05.2022
Accepted: 03.08.2022

Language: English

DOI: 10.35634/vm220308



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025