RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2022 Volume 32, Issue 4, Pages 528–545 (Mi vuu824)

This article is cited in 1 paper

MATHEMATICS

Model of deformations of a stieltjes string system with a nonlinear condition

M. B. Zvereva

Department of Mathematical Analysis, Voronezh State University, pl. Universitetskaya, 1, Voronezh, 394018, Russia

Abstract: In the present paper we study a model of deformations for a system of $n$ Stieltjes strings located along a geometric graph-star with a nonlinear condition at the node. The corresponding boundary value problem has the form
$$ \left\{
\begin{array}{lll} -\left(p_iu_i^\prime\right)(x)+\displaystyle{\int_0^x}u_idQ_i=F_i(x)-F_i(+0)-(p_iu_i')(+0), \quad i=1,2, \ldots, n,\\ \sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0),\\u_1(0)=u_2(0)=\ldots=u_n(0)=u(0),\\(p_iu_i')(l_i-0)+u_i(l_i)\Delta Q_i(l_i)=\Delta F_i(l_i), \quad i=1,2,\ldots, n. \end{array}
\right. $$
Here the functions $u_i(x)$ determine the deformations of each of the strings; $F_i(x)$ describe the distribution of the external load; $p_i(x)$ characterize the elasticity of strings; $Q_i(x)$ describe the elastic response of the environment. The jump $\Delta F_i(l_i)$ is equal to the external force concentrated at the point $l_i$; the jump $\Delta Q_i(l_i)$ coincides with the stiffness of the elastic support (spring) attached to the point $l_i$. The condition $\sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0)$ arises due to the presence of a limiter in the node represented by the segment $ [-m,m]$, on the movement of strings under the influence of an external load, thus it is assumed that $|u(0)|\leq m$. Here $N_{[-m,m]}u(0)$ denotes the normal cone to $[-m,m]$ at the point $u(0)$. In the present paper a variational derivation of the model is carried out; existence and uniqueness theorems for solutions are proved; the critical loads at which the strings come into contact with the limiter are analyzed; an explicit formula for the representation of the solution is presented.

Keywords: Stieltjes integral, function of bounded variation, measure, geometric graph, energy functional.

UDC: 517.927.2

MSC: 34B37, 34B16

Received: 14.11.2022
Accepted: 06.12.2022

DOI: 10.35634/vm220403



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025