RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2023 Volume 33, Issue 1, Pages 3–16 (Mi vuu832)

MATHEMATICS

Potential theory on an analytic surface

B. I. Abdullaevab, Kh. Q. Kamolova

a Urgench State University, ul. Kh. Alimdjana, 14, Urgench, 220100, Uzbekistan
b V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Khorezm Branch, ul. Kh. Alimdjana, 14, Urgench, 220100, Uzbekistan

Abstract: The work is devoted to the theory of pluripotential on analytic surfaces. The pluripotential theory on the complex space ${\mathbb C}^{n},$ as well as on the Stein complex manifold $X\subset{\mathbb C}^{N}$ (without a singular set) have been studied in enough detail. In this work, we propose a new approach for studying the main objects of potential theory on an analytic set with a non-empty singular (critical) set.

Keywords: analytic set, plurisubharmonic function, pluripolar set, ${\mathcal{P}}$-measure, maximal function.

UDC: 517.55, 517.57

MSC: 32U05, 32U15

Received: 04.10.2022
Accepted: 27.12.2022

DOI: 10.35634/vm230101



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024