RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2023 Volume 33, Issue 2, Pages 212–224 (Mi vuu845)

MATHEMATICS

On the type of the meromorphic function of finite order

M. V. Kabanko

Kursk State University, ul. Radishcheva, 33, Kursk, 305000, Russia

Abstract: Let $f(z)$ be a meromorphic function on the complex plane of finite order $\rho>0$. Let $\rho(r)$ be a proximate order in the sense of Boutroux such that $\limsup\limits_{r\to\infty}\rho(r)=\rho$, $\liminf\limits_{r\to\infty}\rho(r)=\alpha>0$. If $[\alpha]<\alpha\leqslant\rho<[\alpha]+1$ then the types of $T(r,f)$ and $|N|(r,f)$ coincide with respect to $\rho(r)$. If there are integers between $\alpha$ and $\rho$, then the resulting criterion is formulated in terms of the upper density of zeros and poles of the function $f$ and their argument symmetry.

Keywords: meromorphic function, function order, function type, upper density, argument symmetry.

UDC: 517.53

MSC: 30D35, 30D30, 42A16, 30D15

Received: 14.11.2022
Accepted: 29.05.2023

DOI: 10.35634/vm230202



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025