RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2024 Volume 34, Issue 2, Pages 167–181 (Mi vuu884)

MATHEMATICS

Direct and inverse problems for the Hilfer fractional differential equation

R. R. Ashurovab, Yu. E. Fayzievcd, N. M. Tukhtaevaa

a Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, ul. Universitetskaya, 9, Tashkent, 100174, Uzbekistan
b Tashkent University of Applied Sciences, ul. Gavhar, 1, Tashkent, 100149, Uzbekistan
c National University of Uzbekistan named after M. Ulugbek, Tashkent
d University of Exact and Social Sciences, ul. Khalka Yoli, Kizgaldok, Tashkent district, Uzbekistan

Abstract: The article studies direct and inverse problems for subdiffusion equations involving a Hilfer fractional derivative. An arbitrary positive self-adjoint operator $A$ is taken as the elliptic part of the equation. In particular, as the operator $A$ we can take the Laplace operator with the Dirichlet condition. First, the existence and uniqueness of a solution to the direct problem is proven. Then, using the representation of the solution to the direct problem, the existence and uniqueness of the inverse problem of finding the right-hand side of the equation, which depends only on the spatial variable, is proved.

Keywords: Cauchy problems, Hilfer derivatives, subdiffusion equation, inverse problems

UDC: 517.95

MSC: 35R11, 34A12

Received: 07.03.2024
Accepted: 05.06.2024

DOI: 10.35634/vm240201



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024